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The derivative nonhnear Schrodinger equation 1s solved by apphication of the
Ablowitz-Ladik scheme to an equivalent equation The variations of the results due to
modifications 1n the spatial grid size and time step are analyzed The scheme maintains the
main properties of the original equation and allows the use of rather large time steps T 1988

Academic Press, Inc

[. INTRODUCTION

In [1] Ablowitz and Ladik generalized the theory of the inverse scattering trans-
form (IST) to cover nonlinear partial difference equations. This generalization is
particularly useful for developing numerical schemes of nonlinear evolution
equations which maintain the main properties of the original equations. The
procedure is as follows. One proposes a discrete version of the standard
Ablowitz-Kaup-Newell-Segur (AKNS) eigenvalue problem [2] of the form [, 3]

” — m L o,
Uins 1 =207, + Q705+ S35, 1

(1.1)

1
Vg = VB RIVT 4 TIOT
where n refers to the spatial grid point and m to the time level, z is the eigenvalue,
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v, and v, are the corresponding eigenfunctions and R}, @7, S, and T are the

n> ¥

potentials. Then, the eigenfunctions are advanced 1n time according to

Vit — o, = A7(z) o, + BR() o,

In 1

(1.2)
vt = o= C(z) o+ D) o,
and one forces the consistency condition
A™E, v )y=E (4™ v™) =12, (1.3a)
where
E(vmy=v2, s A"y, =vmr—pm (1.3b)

are the space and time displacement operators, respectively. Finally one expands
A B7, Cm, and D7 in powers of z and 1/z, imposes (1.3) using (1.1) and (1.2), and
equates terms with equal powers of z. This procedure gives relations between the
coefficients of the expansions of 4™, B, C7, D? and the potentials, and it also
gives the evolution equation that the potentials must satisfy in order that (1.3) is
valid. That is, the evolution equations are the integrability condition of the eigen-
value problem. It is clear that the menthod parallels the standard procedure of
Ablowitz et al [2]: if one chooses different expansions for A7, B, C7, and D7 and
different relations between the potentials one obtains different evolution equations.
In this way the NLS, KdV, MKdV, and S-G equations appeared in Ref. [2] as the
integrability condition of a particular continuous version of (1.1) and (1.2). It is
then clear that this method 1s suitable to obtain the difference scheme for some non-
linear equations of the above mentioned class. In {3] Taha and Ablowitz gave the
discrete version of the NLS, KdV, and MKdV equations which can be used for
their numerical integration [4,5]. The main differences between the equations
obtained in this way and the ones one would obtain by writing the original
nonlinear differential equations directly in finite difference form, appear in the
expression of the nonlinear terms. It is then crucial that these terms be expressed in
a form which maintains the main properties of the equations which are completely
mtegrable by the IST method. ’

However, we cannot apply the above procedure to the derivative nonlinear
Schrédinger equation (DNLS), which describes the evolution of nonlinear Alfvén
waves,

19, —1(q°r) +q.=0; r=—-NSg* (1.4)
where NS is a sign (NS = +1), since Eq. (1.4) is the integrability condition of
v+ i, = ¢qus,

(L.5)
Uzr—ile’z:f"vl,
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with
v, = Av, + Bu,,
vy, =Cv, + Duv,, (1.6)
D=—4

and (1.5) is different from the standard AKNS eigenvalue problem. 4, B, and C are
functions of ¢ and r, whose detailed form is not relevant to this discussion (see
Eq. (1.11) below for an equivalent useful expression). Furthermore, when one
expands A4, B, C, and D in powers of ¢ and equates terms with equal powers, the
evolution equation (1.4) is obtained for the ¢' term, while, for the standard AKNS
case it is always obtained for the £° one. This fact, which 1s due to the factor £ in
front of the “potentials” ¢ and r in (1.5), introduces some asymmetry in the problem
and it is not clear how one can generalize the discrete version (1.1) to this case.
However, there is a transformation of the original eigenfunctions v, and v, which
leads (1.5) to the standard AKNS problem. This transformation is given by [6]

vy =v, exp(—iu)
(1.7)

. ! ,
vy = Cv; exp{ip) — 5 vy r explip),

where p=[* _ rq/2 dx, and it has been used in [6] for solving the DNLS by the
IST. In this way, the eigenvalue problem (1.5) may be written as the standard one

v, + AV = Qv

(1.8)
vh, — 1Avy = Rof,
where
Q =g exp(—2ip)
: 2
- _! a ;
R= 2<rx+z 3 )exp(Zm), (1.9)
A=E2
The evolution equations for R and Q are
iQ,—2Q°R+Q,,=0

(1.10)

iR,+2R*Q— R, =0

and may be obtained as the integrability condition of (1.8) together with the
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corresponding evolution equations for v} and v, (which are similar to the ones
given in (1.6)), expanding A’, B’, C’, and D’ as

A = —iQR—2A?

B'=1Q, +204

¢ ¢ (L.11)
C'=—iR,+2RJ
D=4

This is the same expansion that must be performed in order to obtain the NLS
equation. It is clear from (1.10) that the evolution equations for Q and R are similar
to the NLS system. However, the difference 1s the relation between R and Q, which
is R= F Q¥ for the NLS and

R= 7107 Q* + N2 0% (112)

for the present case.

II. EXTENSION OF THE NLS RESULTS TO THE TRANSFORMED PROBLEM

The similarity between the equations for Q and R and the NLS suggests a simple
way to obtain their discrete version. We follow the steps described in the Introduc-
tion, taking 77 = S7' =0, and choose the expansions

A=A Dz72 4+ 40 4 4272

Br=p-Lz-1 pgthz!

Cm=C{"Yz '+ Pz

Dr=D{2z7*+ D94 D72
as in the case of the NLS equation [3]. We then impose the consistency
condition (1.3) and obtain a discrete version of the evolution equation for Q. If we
require that in the linear limit, as it 1s done in [3]

iam Qn 1
At 2(4x

B Q7 =200+ 07+ Q05 =207+ 1+ 0nt) (22)

then the evolution equation reads as
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IA"’I Q:I_— 1
At 2(dx

)p_ (Q:1"+|_2QZI+PM—|Q:I"—1+PN nm:ll—zQ:rn+l+Q:1n—+ll
+i(PRzOTOII 4P, REI 0T 07

+HQN QT R+ QN OV IR+ O QR LR

n n—1
+ Q:;l Z Am S;‘n_Q:}-t—l Z Am T’;(n))’ (23)
k= - N k=—N
where
Sy=07, Ry+QrRy « Ty=0r (RY+Q7R,,

P,= [l [(1=Rpr+'Qp+"(4x)*)/(1 =Ry Qp(4x)*)],

hk=—x

which 1s similar to Eq. (2.8) of Ref. [3], but where R™ has not been replaced by

m*_The problem in this case is that the relation between R and Q is nonlinear and
the method gives no answer on how to wrte it. Nevertheless, since in the discrete
version of the AKNS the ¢v term is converted into Q7 v™, we choose

no

! mr o _gm 1
RMI—NS' n+1 n—1\_ ~ nm m* 2' .
p-gNs (ZnZ B Somor) (2.4

III. NUMERICAL ALGORITHM AND RESULTS

We have used Eq. (2.3) in order to numerically solve the equation for Q, for both
signs in the nonlinear term (NS =1 and NS = —1) of the original DNLS equation.
For simplicity, we employed a local scheme (which is equivalent to set P, =1,
Sm=7Tm=0 in (2.3)). We have chosen periodic boundary conditions with 2N + 1
spatial grid points (n < N). We have used a numerical algorithm which is explained
in Section 2 of Ref. [4]. The only differences with the formulae given in [4] are the
expression for R and the sign of e = —2i((4x)?/4t). This last difference is due to the
fact that we solve an equation with a different sign in the dispersion term than the
one that is solved in [4]. The algorithm chosen involves two nested iterations. The
outer one is related to the fact that the expression (2.3) is highly implicit and
contains nonlinear terms in which Q, values at the new time level (m + 1) appear.
Therefore, we first take Q7*!= Q™ in those nonlinear terms and solve a linear
system at the new time level. The inner iteration, is related to the way this linear
system is solved, since the corresponding matrix is not inverted, but the values
Q™+ at different spatial grid points are obtained by an iterative procedure. For
both 1iterations we use, as in Ref. [4], the Crank—Nicholson back and forth sweep
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method for the heat equation. If we label by ; the outer iteration number, the whole
procedure 1s stopped when

|Qm+ty—Qgm+ L+l |gm+ 17| < tolerance

and the value Q7+ '/*! is taken as the approximate solution at time t=(m+ 1) 4t
and position x = n 4x. The algorithm requires a small (4x)*/4¢ ratio and allows the
use of a rather large time step. This proved to be useful for the determination
of the long-time behaviour of the solution, since it can be obtained with less
computational effort than with other methods, as the one used 1in Ref. [7]. We have
considered 500 x-grid points and 41> 0.2,

We have implemented the code for the initial conditions Q(x, 0) =¢q exp(i NS
<. lg(x’, 0)]* dx) with g(x, 0) given by:

1. One soliton solution

q(x, 0)=uexp(1p)
u* =84%sin? y/[ch(44? sin yx) + cos ] (3.1)

3 ‘
@ = —2 NS 4% cos ‘})X—ZNSJ u® dx

- X

for 0 <y < m, which represents a soliton of velocity v = —4 NS 4% cos y and
1. Modulated plane wave

2mix x?
q(x, 0)= A, exp (T) exp(—z—z->, (3.2)
where 4 is the wavelength, 4, the amplitude, and L the modulation scalelength of
the Gaussian envelope.

The code preserves the solitons’ identity as it may be seen in Fig. 1 which
corresponds to solitons with v =0.5 and different amplitude. It also maintains the
symmetries of the equation. As we have already said, we have solved the equation
for NS=1 and NS = — 1. However, it is clear from (1.4} that to change NS from 1
to —1 is equivalent to making the change x - —x. If we also make this change in
the initial condition, we obtain

q+(x5[)=q7(_x’ [)s (33)

where ¢, is the solution of the DNLS with positive nonlinearity (NS=1) and ¢ _
the corresponding one to negative nonhneanty (NS= —1). This feature 1s
illustrated 1n Fig. 2, where the evolution of the envelope (|g| = |Q|) from the initial
condition (3.2) is plotted. It 1s clear that, for this initial condition, the changes
x— —x and 41— — 1 are equivalent. Fig. 2a corresponds to NS=1 and 1=35 and
Fig. 2b to NS= —1 and A= —35. The evolution of the imtially modulated plane
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Fic 1 Propagation of an envelope soliton of the form (3 1) (a) corresponds to y = n/4, 4> = V'E/&
NS= -1 The velocity of propagation 18 v=44%cosy=05 4r=02, 4x=012, 2N =500, (b)
corresponds to y=rn/8, 42=01353, NS=—1 The velocity of propagation 1s v=442cosy=035,
41=02, 4x=036, 2N = 500

waves also agrees with the prediction of the IST theory: the pulse decays into a
soliton train plus a dispersive residue (radiation). We have obtained that, for this
initial condition the number of solitons depends on the constant Cl1,

1

C1=j: RQds=5 "

2.2
<—iqrr+q7r> dx. (34)
If C1 1s posttive, there is no soliton and if it is negative, the number of solitons is an

increasing function of its absolute value. Finally the code also keeps the values of
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Fic 2 Evolution of an mmtial pulse of the form (3 2) (modulated plane wave) with 4,=06 and
L=14 (a) corresponds to positive nonlinearity (NS=1) and A=5, (b) corresponds to negative
nonlineanty (NS= —1) and A= —35 It 1s clear that |g.,(x, )] =gs,(x, t)| and so, the changes x - —x
and 1 - —/ are equivalent In both cases 1s 41=0.2, Ax=02, 2N =500
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the constants of motion of the DNLS equation. When the conservation of the two
first constants of motion CO,

c0=r |q|2dx=r’ 10|12 dx (3.5)

and C1 is tested, it may be seen that the relative differences between their values at
different instants are less than 5%. The conservation is better for solitons than for
modulated plane waves. For those cases of an initial modulated plane wave with
negative C1, the errors grow till the moment at which the pulse achieves its
maximum peak value and minimum length scale, that is, just before the formation
of the soliton train. At this moment the number of outer iterations (/7) to achieve a
ratio [(Qr+ 1 /T—Qm+ L IT-1)/gm+1LIT—1| |ess than a given tolerance (0.01) is the
highest one (in the examples we are analyzing it never exceeds the value of six
iterations). Afterwards IT remains constant (/7=2, 3) and the errors first decrease
and finally increase monotonically. For positive C1 these errors grow
monotonically from the beginning, while the number of iterations remains constant
(IT=3). Although IT is constant for the cases which give no soliton train, the
errors are greater than for the other cases. Besides, for negative C1, 1t is evident that
the characteristic time scales decrease with C1. This fact allows the use of rather big
time steps without losing the properties of the solutions. The errors also depend on
the time step, spatial grid size, and on the ratio 4 = (4x)*/4t. If we let 4t mvariant
and lower A4x, then A is also reduced and the conservation of C0 and C1 1s better
However, the conservation of CO is more affected than that of C1. If we let Ax
invariant and increase At, the conservation of CO is poorer. The errors of Cl,
instead, as A 1s lower, are hardly reduced for those steps with small /7, but then
grow when many iterations are needed. We suppose that this different sensitivity to
the variation of 4x and Ar is due to the fact that C1 is the first constant that the
IST method affords. CO may be prescribed independently, it does not depend on the
scattering data [6]. As the numerical algorithm 1s closely related to the integration
of the equation by the IST and only the A ratio enters in the computation of Q"%
(Q°), C1 is more affected by A variations and CO, by variations in 4x and 4t
separately. Nevertheless, when the number of iterations /T is too large, C1 is better
conserved for lower At values which give lower values of IT.

IV. CONCLUSIONS

We have applied the local Ablowitz—Ladik scheme to a nonlinear equation which
is equivalent to the derivative nonlinear Schrodinger equation. The code maintains
the main properties of the equation and allows the use of rather large time steps.
These time steps may be chosen in such a way that the number of iterations needed
to obtain Q"% (Q°Y) is not too large. As the characteristic time scales vary during
the integration, the code may be improved by including the possibility of a
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modification of Ar during the integration. We have analyzed the conservation of the
two first constants of motion CO and C1. The conservation is better for solitons
than for modulated plane waves and for the NS= —1 case better than for the
NS =1 one. The errors 1in the conservation, which do not exceed 5% of the
constants values, depend on the time step and spatial grid size; while CO is most
affected by variations in Ax and A4: separately, Cl is affected by varations in
the ratio A= (4x)?*/4t. We think better results could be achieved for lower Ax
and A:, and consequently, lower A values, but we did not try them because of
computational limitations.

REFERENCES

I M ABLowITZ AND J LADIK, J Math Phys 16, 598 (1975), M ABLowITZ AND J LADIK, Stud Appl
Math 55, 213 (1976), M ABLowiTz aAND J LADIK, J Math Phys 17, 1011 (1976), M ABLowITZ
AND J LADIK, Stud Appl Math 57, 1 (1977)

M AsLowitz, D Kaup, A NEWELL, AND H SEGUR, Stud Appl Math 53, 255 (1974)

T TaHa AND M ABLOWITZ, J Comput Phys 55, 192 (1984)

T TaHA AND M ABLOWITZ, J Comput Phys 55, 203 (1984)

T TaHa AND M ABLowiTZ, J Comput Phys 55, 231 (1984)

D Kaup AND A NEWELL, J Math Phys 19, 798 (1978)

S R SPANGLER, J P SHEERIN, AND G L PaYNE, Phys. Fluids 28, 104 (1985), S R SPANGLER,
Astrophys J 299, 122 (1985)

~N AN BN



